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\hstract. It is known to many field biologists that bio-

surveys of natural communities tend to produce a J-shaped

curve when the numbers of species are plotted against

abundances. In other words, when the number of species of

abundance k is plotted against k (running from 1 to some

large number), the resulting distribution peaks at the lowest

abundance, then forms a concave ramp as it approaches zero

at the far end of the abundance axis. Does this distribution

represent a single formula operating behind the scenes, or

does it represent several formulas, appropriate for different

types of community'
1 Or does it represent no particular

formula at all?

The research reported here has three components: ( 1 ) The

analysis of a new dynamical system that simulates multi-

species communities (producing J-curves in the process)

and the derivation of the "logistic-]" distribution, as the

underlying community equilibrium curse: (2) the summary
of a general theory of sampling as a bridge between natural

communities and samples of them; (3) the evaluation of

extant proposals for species-abundance distributions by ap-

plication of a general theory of sampling or by cross-

comparison via 100 hiosurveys randomly selected from the

literature.

Introduction

A glance at the species/abundance distribution for almost

any community of organisms surveyed in the literature

reveals a distinct tendency for the community-as-sampled to

have more species at lower abundances than at higher ones.

In fact the number of species per abundance tends to he

highest at the lowest abundance and thereafter lo taper

somewhat in the maimci ni ihc empirical distribution shown
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in Figure 1. In biological folklore (if not in the literature),

this curve is known as the "J-curve." owing to its resem-

blance to a backwards letter .1.

To speak of "the J-curve." however, begs a very large

question. Is there a single theoretical distribution that un-

derlies virtual!) all natural communities? Although it seems

almost too much to ask. this mav well he the case.

In spite of the fact that the J-curve is a commonplace
observation (Williams. 1964). one of the most popular the-

oretical distributions, namely the lognormal distribution

(Preston. I-4S). shows little resemblance to it. As shown in

Figure 2 ( upper I. the lognormal distribution is essentially a

normal distribution that has been compressed at the low end

and drawn out at the high end. both operations effected by
a single logarithmic transformation.

Conspicuously absent from the lognormal distribution is

the sharp peak at the low abundance end. To save it from

such a discrepancy, its proposer has postulated a "veil line"

(See Fig. 2). a vertical line of truncation that has the desired

effect, more or less. Preston argued that samples of a natural

community do not follow the same distribution as the com-

munity itself: all the species below a certain abundance (the

\eil line) simply fail to show up in samples.

This claim is fundamentally wrong (Dewdnev. I'WXi

Indeed, species dial fail lo show up in a sample are veiled by

a very different line, as shown in Figure 2 (lower). In this

figure we use an unrealistic species/abundance distribution

to illustrate the difference between the "veil line" and the

"\eil cui\e." Far from being a vertical, straight line, the true

veil curve is a sloping, sigmoidal one. The species above or

to the left of the \eil curve will lend to be absent from the

sample. As proved in the recently developed general math-

ematical theory of sampling (l)cwdney. IWS). the removal
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Figure 1. A typical species-abundance distribution (McCabe and Weber. 1994).

of these species cannot change the shape or formula of the

distribution, only its parameter values. It follows that when

we apply the veil curve to the lognormal distribution, we

must get a new. complete lognormal distribution, not a

truncated one.

The metastudy reported in this paper compares two the-

oretical proposals for the distribution of species abundance

in natural settings. But it does not even consider the log-

normal distribution: if the lognormal were present in nature,

the first abundance categories would have to be smaller than

succeeding ones. Not one case of this has turned up in the

50 randomly selected biosurveys used in the metastudy.

This observation, coupled with the new sampling theory,

means that the lognormal distribution, as a descriptor of

abundances in natural settings, is effectively dead.

A closely related distribution, the negative binomial

(Pielou, 1975), also uses the veil line concept and suffers

from the same unrealistic shape when unveiled, so to speak.

This distribution is therefore also not considered in the

metastudy and for the same reasons. It is no longer usable as

# spp

curve

veil

line

lognormal distribution

abundance

uniform distribution

abundance

Figure 2. Veil line and veil curve for the lognormal distribution.
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a descriptor of natural abundances. One may suspect that a

general theory of sampling was not developed until now

because of the contusion created hv the mistaken concept of

the veil line.

The other leading contender for species/abundance dis-

tribution of choice has been the log-series distribution de-

veloped by C. B. Williams and R. A. Fisher (Fisher ft al..

1943). As shown in Figure 3 below, it has the right general

shape, being most sharply peaked at the low abundance end

and tapering in concave fashion to zero.

Williams originally believed that the curve ought to be

hvperbolic (Williams, 1964). Such a curve has the general

form of I/A. where k represents abundance. But Fisher

pointed out that the area under the hyperbolic function was

infinite, hardly desirable in a statistical distribution! He

suggested altering the hyperbolic function by inserting a

convergent series that forced the area under the curve in

converge to a finite value. (There is no biological reason for

this alteration.! The probability density function (pdf) is

therefore

\7k.

where k is an abundance and x
k

is the convergent series, x

being a parameter that is strictly less than 1 (but usually

close to it). When used in the field, the distribution contains

an additional factor a that reflects the number of individual

organisms in the sample. But a is not a parameter, and the

log-series is known as a one-parameter distribution. It has

been noted (May. 1975) that the log-series distribution has

points of superiority over the lognormal.

Theory: a neu individual-based dynamical model

Independent!}, of concerns about the state of theoretical

abundance distributions, the author had constructed an in-

dividual-based (Judson. 1994) dynamical system (Dewd-

nev. 1997) that was original!) intended as an exploratory

tool for probing the abundance distributions of heavily

predaceous communities such as stream henthic protists

(Dewdney. 1496). In this model, an arbitrate number of

species, each with an arbitrary population si/e. preyed on

one another in the following manner: W'ithin each iteration,

two individuals (not species) are chosen at random. One

individual ingests the other, reproducing in consequence. It

is called the multispecies logistic system, or MSL system,

for short. The adjective "logistic" was chosen because the

total biomass (number of individuals) remained fixed as a

simple consequence of the basic trophic act. Thus very

abundant species were less likely to ingest other species as

they approached the logistic limit.

The MSLsystem was embedded in a computer program,
w ritten in Turbo Pascal and running on a 48ft computer. One

hundred iterated pair selections (births and deaths) make up
one "cycle" (a programming convenience). After each cy-

cle, the program displays a histogram of species versus

abundances. It permits the user to select any number of
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species, as well as initial abundances for each. The program
comes equipped with an "extinction switch," essential to the

program's usefulness. With the extinction switch "on," any

species having abundance 1 will, when eaten, disappear

from the simulation. With the extinction switch "off," spe-

cies with abundance 1 will not be eaten, although they can

(and do) end up preying on other species, with a possibility

of subsequent further increase.

With 200 species, each with initial abundance of 20, a

486 computer takes about 10 minutes to drive the MSL
system to equilibrium (extinction switch off). Initially, the

species appear as a sharp spike at 20, then spread out into a

binomial distribution with 20 as mean. However, the species

continue to drift in abundance until the shape of the distri-

bution changes radically. A peak forms at the low end, and

a long tail appears on the right.

Surprisingly, the process stops when the distribution

curve reaches what can only be described as a "J-shape,"

retaining roughly that shape for as long as the computer is

run. The higher the initial average abundance, the shorter

the initial spike. At very high abundances, there are only

occasional, small spikes at the lowest abundance.

The appearance of a J-curve invariably surprises those

who would predict that a binomial (or normal) distribution

must result or that, contrariwise, all but a few of the species

will migrate to the low end. In the next section we show

how a large metastudy of extant biosurveys has already

begun to indicate that distributions produced by the MSL
system cannot be distinguished statistically from typical

biosurvey species abundance distributions.

The MSLprogram is capable of calculating the average

of the distributions it produces at each cycle. Figure 4 shows

such an averaged distribution. The height of each bar in the

histogram represents the average number of species that

occupied the corresponding abundance category from the

onset of equilibrium. Because the behavior of the MSL at

the high abundance end has special interest, the frequencies

have been inverted in Figure 4, appearing above the bars as

a separate plot of isolated points. These will be examined

presently.

100

20

abundance

1 2 3 4 5 67 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2324 25 26 2728 29 30

Figure 4. An average distribution produced by the multispecies logistic system, and a plot of inverted

average frequencies.



156 A. K. DEWDNEY

Most natural communities of interest do not have the low-

average abundance used in the computer run for Figure 4.

Instead of in the tens, average abundances may easily run

into the thousands or even millions. In other words, the

overall shape of the distribution shown in Figure 4 would be

more typical of a sample than of a community. As men-

tioned earlier, when the MSLsystem is run with such high

abundances, there is little or no peak at the low abundance

end. The distribution resembles instead the idealized pattern

shown in Figure 6. as explained later. Nevertheless, when

the extinction switch is turned on during such an equilib-

rium state, species occasional!) visit the low end. either to

escape again or to become extinct. The time between suc-

cessive extinctions grows at a modestly exponential rate.

Far from being unrealistic, this is precisely what we

expect in natural communities. For example, the island

biogeographv theory of R. H. MacArthur and E. O. Wilson

( 1967) recogni/es that isolated communities naturally lose a

certain percentage of species every year. They estimate that

when the island of Krakatoa achieved equilibrium between

immigrants and extinction losses in its bird community at

roughly 27 species, the turnover rate was about 1.13% of

species annually.

Anticipating the discussion at the end of this article, we

may imagine for the moment that the MSL describes birds

as well as microorganisms. A community of 27 species of

"birds" with an average of 200 individuals per species

typically loses about 9 species during 1000 cycles of oper-

ation. Each cycle involves 100 reproductive events. If half

the total bird population (i.e.. females), namely 2700 indi-

viduals, reproduce in one year, then 27 cycles corresponds

to the passage of one year. Thus 1000 cycles corresponds to

37 years and a loss of 33.3% of its species over the period.

This corresponds to a rate of at least 0.9% of the species

every year. This figure is certainly close enough to the

MacArthur and Wilson ( 1 967) figure to make the only claim

that is necessary in this context: the rate of species loss in

the MSLsystem appears to be of the right order of magni-
tude. To explore equilibrium conditions, the MSL system
can be run with the extinction switch "off."

Variations of the underlying MSL dynamical system
make little difference to the outcome. These have included

( 1 ) changing the food web so that predation follows a cyclic

order, (2) redefining the food weh to include four compart-
ments: plants, herbivores, carnivores, and saprobes, (3) run-

ning separate communities in which randomly selected in-

dividuals may migrate from one "patch" to another. In all

cases the same J-curve apparently re-emerges. This robust

character of the J-curve seems to indicate a phenomenon
more fundamental than predation or oilier trophic behavior

at work. In fact, the essential feature of the MSL is that each

species vibrates stochastically, in effect. In other words.

each species in the system performs a constrained random

walk in the sense thai (a) .it c;ich abundance each species

has an equal probability of decrease as increase, and (b) the

total abundance of all species remains constant. Typically,

species may be said to be in a stochastic orbit about the

mean abundance, with a majority having less than the mean

abundance at an) lime.

Assuming only this fundamental property and assuming
for the moment an infinite number of species, it is easy to

prove that, at equilibrium.

A-/UI = (k + D-./U- + 1 ).

In other words, at equilibrium the probability of a species of

abundance k increasing equals the probability of a species of

abundance k + 1 decreasing. This equation has essentially

only one solution, namely Jlk)
= \/k.

The foregoing analysis paves the way for the finite case.

Since the number N of individuals in the MSL system
remains constant during a run. no species can ever have

abundance greater than N - R + 1. At equilibrium, in the

ideal sense of this analysis, there must be a number A at

(and beyond) which Jlk)
= 0. The number A ma) well be

less than the absolute limit just cited. We assume (but

cannot prove directly) that the function /is driven to /.ero in

the following manner.

!>(k)-k-f(k)
=

p(k + \)-(k + D-./U + 1)

Here we have postulated what dynarnicists call a "forcing

function," which acts to drive the values of/ to /.ero at the

limiting A-value of A. This equation can also be solved

readily.

/Ul = I/U- /><*))

It /(A) = then there is an obvious singularity at k = A. The

simplest function capable of such behavior is

l>(k)
-= (A - k)

'

and the function /'can therefore be rewritten.

or, equivalent h .

,/U)
= (A - k)/k

/(A) (I ?>k)/k.

where f> I /A. Anticipating the addition of a normali/ing

constant presently, we can multiply / by an) constant we

like in the process of developing a convenient mathematical

expression for the density function.

The logistic-J distribution

The logistic-J distribution (discrete version) has the fol-

lowing pdf:

/U) c( I/A
-

8): k =
I to A.

where the abundance ( runs horn 1 to a maximum A called
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the outer limit and 8 is the inverse of A. The latter parameter

is not a hard limit, but an average maximum, as will he

made clear later. This particular pdf has one parameter, A,

the constant c being simply a function of A. When the MSL
system reaches equilibrium, one finds a species with abun-

dance greater than A about half the time.

In a more general setting, where the distribution is to

apply equally to real communities and samples of them, it is

useful to have the logistic-J distribution in continuous form:

/(.v)
= dl/.v

-
8), e <.v< A,

= o. elsewhere

In this form an additional parameter, e, appears. Called the

inner limit, it represents the average lower limit of abun-

dances in a community or as reflected in a sample of that

community. For example, abundances in a sample may be

given as density data wherein the lowest abundance might

be 0.25. Or sample abundances may start at 5, say. Super-

ficially, the use of epsilon resembles a veil line, but it has

nothing to do with sampling. Instead, it represents the

average minimum abundance in the community of organ-

isms per se.

The constant c is simply shorthand for the standard nor-

malizing constant for pdfs. In this case,

c = (ln(A/e)
-

1)"'

The pdf/is defined to be zero outside of the interval (e. A).

As a mathematical convenience, we adopt the notation

L(e, 8) for the logistic-J distribution with parameters e

and 5.

In the case of the frequencies generated by the MSL

system, as shown in Figure 3, the appropriate logistic-J

distribution / has been calculated. To demonstrate that the

distribution of frequencies produced by the MSL system

does indeed appear to follow the logistic-J distribution, we

have inverted the theoretical values, plotting them as a

smooth curve, for comparison with the (inverted) model-

generated values. It will be seen that the agreement is as

close as can be expected, bearing in mind that the smallest

statistical fluctuations at the high abundance end will, when

inverted, produce relatively large fluctuations in the (point)

plot shown in the figure. The overall trend is clear. The

inverted theoretical curve approximates the inverted MSL

points about as well as can be expected. The distribution

produced by the MSL appears to be logistic-J.

The parameters e and 5 define a logistic-J distribution

completely. A useful visualization of the significance of

these parameters is presented in Figure 5, which shows a

standard hyperbola </(.v)
=

l/.v) in relation to axes rendered

in thick lines. Two other axis systems, rendered in lighter

lines, are superimposed on the figure. In the first axis system

the hyperbola has the formula l/.v, and in the other axis

systems it has logistic-J formulas, to be explained presently.

The logistic-J distribution corresponds to a section of the

standard hyperbola, the origin of the section being deter-

mined by the parameters e and 8.

According to the sampling theory derived by the author

#spp

hyperbola

abundance

(0,0)

Figure 5. Logistic-J probability density functions based on the standard hyperbola.
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I Dewdney. 1998), it is possible to draw a direct relationship

between a sample distribution and the distribution prevail-

ing in the community from which the sample was drawn.

The theory applies to all candidate distributions, including

the logistic-J. where it has a particularly simple form. Sup-

pose a field biologist samples a community of organisms

with intensity r. that is, observes/collects 100r9 ot the

individuals in each species (to within the usual statistical

fluctuations i. It the distributions are logistic-J and the bi-

ologist finds the sample abundances following L(e, 8).

then the community abundances follow the distribution

L(e/r. r<5). Thus if / ().(!> and the biologist finds

L(0.3. 0.004 ). then he or she may reasonably estimate the

community sample as following the distribution L(6.0,

0.0002) (in which the miter limit is therefore 5000).

The sample distribution may be thought of as the

left-hand hyperbolic section in Figure 5. while the com-

munity distribution ma\ he thought of as the one on the

right. In this context, however, continuous figures are a

little misleading. Since the community distribution is

actually discrete and the abundances are normally much

larger than those in a corresponding sample, we may

represent the distribution of abundances in a community
somewhat in the manner of the idealized diagram in

Figure 6. in which individual species appear as small

squares separated by spaces that increase in a modestly

exponential manner from left to right. The very modest

peak in the right-hand logistic-J distribution of Figure 5

would correspond to the relatively small space between

the first two species in Figure 6.

The actual spacings shown above derive from the logis-

tic-J distribution and are based on the hypothesis that com-

munities actually follow the logistic-J distribution. As such,

the actual distribution would hardly appear so nicely ar-

ranged. Clumps and gaps would abound, just as they do in

the MSL system when it is operated w ith parameters that

correspond to communities rather than samples of commu-
nities. However, even if they follow some other kind of

distribution, it must be a J-curve (according to Dewdney.
1998) and the actual distribution would not be noticeably

different from a perturbed version ol the one shown in

Figure 6.

The biosurvey metastudy

For the past tew seals (he author has been gathering

abundance surveys liom the literature. Called "biosur-

veys" here. the> covei lour kingdoms of life (there being

apparently few biosurveys of Bacteria or Archaea. if

any). They were taken in polar, boreal, temperate, and

tropical biomes of every type: terrestrial, freshwater, and

marine. The intention is to include, ultimately, 100 "ran-

domly selected" biosurveys in the study. Biosurveys se-

lected for the study have three criteria to fulfill: They
must (a) include at least 30 species, (b) not exclude

uncommon or low abundance species, (c) not use num-

bers that are anecdotal or order-of-magnitude figures. So

far. out of about 70 hiosurveys selected at random. 50

have passed these criteria (and these criteria alone), to he

included in the stud) .

Ideal I), a "random selection" of hiosurveys would

require (a) a list of all the biosurveys ever taken and (h)

a random number generator to select items from the list.

Unfortunately, no such grand list exists. However, in the

context of the metastudy reported here, "random" onl\

needs to mean "not prejudicing the outcome." In other

words, it makes no difference how biosurveys are se-

lected from the literature, provided that nothing in the

selection process tends to turn up surveys that favor the

logistic-J distribution in some way. It is impossible, in

any case, even by visual examination of abundance data

in a typical biosurvey, to decide whether it would fit one

distribution better than another. Even so. the research

assistants who did most of the selecting were instructed

to scan through Biological Abstracts and other databases

and to note every biosurvey encountered. If the journal

happened to be in our library, the assistant then went to

the article in question and. if the total number of species

was 30 or more, made a copy of the paper. The author

then applied the remaining criteria, rejecting papers that

failed to meet conditions (b) or (c). as stated in the

previous paragraph, but accepiiii^ nil others without prej-

udice.

Occasionally, in this process, the author would note that

one kingdom of life or another was under-represented. The

assistants were occasionally instructed to find more biosur-

veys on fungi, protists. plants, or what have you. Besides the

papers selected by assistants, the metastudy includes a bio-

survey by the author (#1) and two papers by biological

colleagues (#19. 20) who had heard of the study and vol-

unteered their findings without knowing exaetl) what I

expected to Inul.

At the present point. hallwa) through the stud), the

emphasis has been \er\ much on the animal kingdom:

1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

abundance

HKIIIT 6. Iilcali/cd distribution ol species in ;i laryc community.
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Fungi/Lichens

Protista

Plantae

Animalia

6

3

5

36

The Animalia set includes 10 fish surveys. 7 of birds, 1 of

herptiles, 10 of insects, 2 of crustaceans, 1 of molluscs, 4 of

"invertebrates," and 1 of "macrofauna." The Plantae set has

3 herbaceous plant surveys. 1 of trees and I of mosses. In

various combinations, the surveys were conducted in 27

temperate, 16 tropical/subtropical, and 7 boreal/polar loca-

tions. General habitat types included 27 terrestrial, 1 1 fresh-

water, and 12 marine.

For each biosurvey selected for the study, a species-
abundance histogram was created, as outlined in the fore-

going section. Some biosurveys gave raw counts for a

specific community of organisms, others gave density data.

In all cases, the continuous version of the logistic distribu-

tion was used, illustrating its great flexibility. The log-series

was also applied to both kinds of survey data, according to

the method outlined in Magurran (1988). Its normal range
had to be extended (in a mathematically defensible way) to

handle density and percentage data, however. This exten-

sion did not detract from its ability to fit natural communi-

ties.

The chi-square test (Hays and Winkler, 1971 ) is normally
used in goodness-of-fit applications to produce a statistic

that describes how closely the theoretical distribution fits

empirical data. In this study, however, the test was used in

comparative mode, a legitimate practice that involved a

direct comparison of chi-square scores to determine which

theoretical distribution best fit the 50 biosurveys overall.

Figure 7 shows a portion of two consecutive lines from a

chi-square table. When the statistic has been computed for

both the logistic-J and the log-series distributions in relation

to a specific biosurvey, it might well be that one statistic had

5 degrees of freedom and the other had 6.

In the present context, the degrees of freedom to apply in

a given instance of the chi-square test is determined by the

number of abundance categories into which the data has

been divided minus the number of independent parameters

in the distribution. Since the log-series distribution has just

one parameter, whereas the logistic-J has two, the log-series

distribution was typically tested at one higher degree of

freedom, an advantage that exactly compensates for the

reduced descriptive power that accompanies fewer param-
eters.

Suppose for example, that a particular biosurvey matches

the logistic-J and the log-series with exactly the same chi-

square value, say 5.321. The P value along the top of the

table is simply the cutoff probability beyond which the fit

would be rejected in normal applications. For example, a

chi-square value of 5.321 at 5 degrees of freedom is less

than 6.62568, and this means that the fit must be "accepted"
at the 0.75 level.

In fact, as normally used, the chi-square test, like all

goodness of fit tests, works best as a rejector of fits. If the

chi-square statistic were greater than 6.62568, then it could

be rejected at the 0.75 level, meaning that one could reject

the fit and be 75% positive that no mistake was made in the

rejection. However, the test is not symmetrical in relation to

"acceptance" and rejection. If accepted, we can say only
that the fit was not rejected. Acceptance amounts to nothing
like a proof that the accepted theoretical distribution is the

actual underlying source of variation. Nor could it. There is

an infinity of distribution functions that could be cooked up,

all of them quite different from each other, all of them fitting

the empirical data equally well.

Although we will not be using the chi-square test in

rejection/acceptance mode, the foregoing introduction

serves to introduce the P values that are crucial to the

metastudy reported here.

Returning to the example where both the logistic-J and

log-series happen, by coincidence, to have exactly the same

chi-square score of 5.321. we can work out the correspond-

ing P values by a simple process called linear interpolation.

The P value gives us a direct comparison between the two

scores. Thus at 5 degrees of freedom the chi-square value of

5.321 corresponds to a P value of 0.607, while at 6 degrees
of freedom, the chi-square value of 5.321 corresponds to a

P value of 0.497. In this case then, the log-series chi-square

score (0.497) would be superior to the logistic-J score

(0.607).

This example not only illustrates how more degrees of

freedom translates, other things being equal, into a lower P
value, but how the P values themselves make it possible to

translate between chi-square scores at different degrees of

freedom. Since the mapping between chi-square scores and

their corresponding P values is 1-1, it is reversible. In other

p value:

df
0.50 0.75 0.90 0.95

5

6

4.35146

5.34812

6.62568

7.84080

9.23635

10.6446

I 1.0705.

12.5916

Figure 7. Two lines from a chi-square table.
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words, we can start with a chi-square score at one degree of

freedom, map that score into .1 corresponding P value, then

turn around and map the P value into a chi-square score at

some other degree of freedom, it being guaranteed (by the

definition of the P value) that the scores will be comparable.

The chi-square distribution with 10 degrees of freedom was

selected as the "currency" of choice. 10 being an interme-

diate value over all the degrees of freedom that actually

occurred in the metastudy. Each chi-square score, whether

for the log-series or for the logistic J distribution, was

normali/ed in this fashion into the corresponding chi-square

score at 10 degrees of freedom.

Appendix Table 1 display s the raw chi-square score and

the corresponding nonnali/ed scores (at 10 degrees of free-

dom) for both the logistic-J and the log-series distributions,

as applied to each biosurvey used so far in the metasiudy

All chi-square scores were calculated by a program written

in Turbo Pascal by the author and run for both sets of data.

The right-hand column of the table displays the difference

between the normali/ed scores.

The average normalized score for the logistic-J distribu-

tion over all 50 biosurvey s was 10.653. while the average

score for the log-series distribution was 12.949. The latter

score is significantly higher, as revealed by a paired sample

interval estimate (Wonnacott and Wonnacott. 1982). In this

technique the paired differences are subjected to a means

test specialized for paired data such as we treat in Figure 8.

A confidence interval based on these data yields an average

difference in normalized scores of 2.296 1.547, which

may be interpreted as follows: the probability that the two

means differ by less than 2.296 - 1.547 = 0.749 is 5%.

Indeed, a better interval at 99% confidence of 2.296 2.063

can also be constructed. Here, with probability of only 1%,

the two means differ by no less than 2.296 - 2.063 =

0.233. The difference, though small, is apparently real: With

99% probability, the mean chi-square score for the logistic-J

distribution is definitely lower than the mean chi-square

score for the log-series distribution on the same data. The

logistic-J distribution outperforms the log-series distribution

in this sense.

Not only are the test score means apparently different, but

the average score of the logistic-J distribution also appears

to be optimal or near-optimal, and in two ways.

The mean of the chi-square distribution with n degrees of

freedom is exactly n, and the variance is In (Hays and

Winkler, 1971). Thus the chi-square distribution at 10 de-

grees of freedom has a mean of 10.0. The average normal-

ized chi-square score for the logistic-J distribution. 10.653.

is obviously not tar from optimal, whereas the average

normali/ed chi-square score for the log-series distribution.

I2>J49. is further away.

Under the null hypothesis, a distribution that was the

actual source of variation in the biosurvey data would tend

to have a score of around 10. On the other hand, the rather

high variance, 20.0 in this case, serves as a warning not to

take the closeness too seriously. Even if the logistic-J had

achieved an average normali/ed score of 10.0. it could

easily have been as much as one standard deviation (4.47)

away from the optimal score, and in either direction.

The median of the chi-square distribution for a given

number of degrees of freedom is the score that corresponds

to a P value of 0.500. Under the null hypothesis for the

chi-square distribution with 10 degrees of freedom, we

would expect half the scores to be less than 9.342. As it

happens, some 23 of the normalized logistic-.! scores have

this property, whereas only 1 7 of the normalized log-series

scores are less than 9.342.

Taken together with the near-certain superiority of the

logistic-J distribution over the log-series, this evidence may
be interpreted as reasonably strong support for the hypoth-

esis that abundances in natural communities follow the

logistic-J distribution.

A final result is worth reporting. The version of the

logistic-J distribution that appears in this study used an

estimate for the parameter A based on the mean and lowest

category frequency of the empirical distribution. The result-

ing value of A may therefore be interpreted as a prediction

of the maximum abundance for every biosurvey in the

study. Since the predicted maximum abundance is only an

average value, we would expect that if the predictions were

accurate in this sense, the average value of the maximum
abundances in the biosurveys would he fairly close to the

average predicted values.

To test this hypothesis, the ratio (percentage) of actual

maximum abundance to that predicted by the logistic-J

distribution was calculated for each biosurvey and the re-

sults plotted as percentages, as in Figure 8.

As it turns out. the average percentage ratio of maximum
abundances is 99.1%. This means that the 50 predicted

(average) maximum abundances behaved as would be ex-

pected if the communities in question followed the logistic-J

distribution. Although highly accurate, this result must

-r-E
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again be interpreted with some caution, as the statistic is apt

to suffer from a high variance. Nevertheless, this result also

supports the hypothesis, and from a quite different direction.

Summary

There are two hypotheses implicit in the foregoing. The

first hypothesis is that all natural communities follow the

logistic-J distribution. The second hypothesis hinges on

what level of interpretation is applied to the MSL system
itself.

The first hypothesis has little meaning until the word

"community" is defined. We define a place as any con-

nected volume within the biosphere, a time as the period

between two clock/calendar readings, and the supcrcomimi-

nity connected with this place and time as the set of all

living organisms within the space over the time in question.

A "community," as we shall use the word, will be a subset

of the supercommunity. Although somewhat too abstract to

be very useful, we may restrict the meaning somewhat by

allowing as "subsets" only taxonomically related organisms

or those related by similar size or by being found in the

same habitat type or, in general, any sense of the word

habitually used in the field. Although the MSL system

models only supercommunities, a compartmentalized ver-

sion of the model reveals the same distribution obtaining

within compartments (e.g., herbivores).

The first hypothesis, that all natural communities follow

the logistic-J distribution, has been supported by three sep-

arate outcomes of the metastudy:

First, the logistic-J distribution significantly outperforms

the log-series distribution as a descriptor of abundances in

communities. As already seen, the lognormal distribution,

when truncated properly, has no resemblance at all to em-

pirical data. With the two most commonly used distribu-

tions thus eliminated, there remains no serious alternative to

the logistic-J distribution;

Second, the logistic-J has a normalized chi-square score

that exceeds the median about half the time. Not only does

it outperform the log-series distribution in this respect, but

its closeness to the expected number of such scores, namely

25, might be interpreted as another hint of optimality.

Third, the scores of the logistic-J distribution on the

biosurveys considered as a whole reproduce the chi-square

distribution itself. This can happen only if the null hypoth-

esis is always (or almost always) true of the biosurveys in

the study. The possibility remains that another theoretical

distribution is the proper one. but it will so closely resemble

the logistic-J as to be perpetually indistinguishable from it.

given the results of the metastudy so far.

Fourth, the average outer limit predicted by the logistic-J

distribution matches the average maximum abundance of

the biosurveys themselves. This would also be true if all the

biosurveys had the logistic-J as their underlying distribu-

tion.

The second hypothesis, concerning the mechanism un-

derlying the logistic-J distribution, necessarily involves re-

flection on the MSLsystem itself. But the MSLmodel has

three levels of interpretation that are mutually compatible,

but successively more general. As originally intended, it

was to reflect the high levels of predation to be found in

stream benthic micro-environments (Dewdney, 1997).

At the next level of interpretation, individuals are not

ingesting each other, but merely trading biomass for repro-

ductive enabling. This view covers not only predation. but

competition for sunlight (as when one plant shades out

another, taking biomass that would, in effect, have been

accumulated by the shaded plant), and saprobic activity of

fungi and bacteria. Obviously, this view stretches the MSL
system considerably but, as we have already seen, the basic

model system is "detail hungry." When altered to employ
fractional trophism or when modified to operate on the basis

of definite food webs, it still produces J-curves.

At the third level of interpretation, even the trophic ac-

tivity is irrelevant. All that matters is that a given organism
is as likely to reproduce as it is to die before reproducing.

Although this may not be true over short periods of time for

actual species, a certain long-term birtnVdeath equiprobabil-

ity surely prevails for every species that has survived to the

present day. In other words, regardless of the individuals

involved, a species has been as likely to increase, in the long

run. as it was to decrease. The ratio, after all, is the number

of successful reproductions divided by the number of

deaths.

The notions of a priori probabilities of death or repro-

duction are not very useful, unfortunately. There is no way
to measure them and no way to predict the outcome even if

they turned out to be equal. In direct contradiction to what

any theorist (including the author) might have guessed, the

seeming stability implied by equal probabilities of decline

or abundance is an illusion. Instead of a normal (or even a

lognormal) distribution, a J-curve invariably results. This

would be just as true of any natural system obeying such an

hypothesis as it is of the MSL system. Taken literally, the

behavior of the MSL system would predict that most pop-

ulations will appear to be regulated (Turchin. 1995), at least

somewhat, by density over the short run. while appearing

increasingly stochastic in the long run.

We shall adopt a hypothesis that is nearly equivalent to

this. At any time (seasonal and cyclic effects aside) and in

any community, it is unpredictable whether the next change

in the population of a given species will be an increase or a

decrease. Indeed, we hypothesize that all species in all

communities are continually undergoing what may be called

"stochastic vibration." In the MSL system, species contin-

ually orbit the mean population size. At any time, most have

smaller populations, some have larger populations, and a
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few have much larger ones. In a purely random manner,

some very abundant species decline, ultimately to very

small numbers, while others increase dramatically and for

no apparent reason. Such an increase in a real community
(that followed such a regimen) would usually have many
causes that chanced to work together, or sometimes a single

cause that happened to dominate all other factors.

Such unpredictability does not amount to a claim of

nondeterniinism. Perhaps a reasonable analogy will he

found in the stock market. Although thousands of invest-

ment decisions, each of them deterministic for the individ-

uals concerned, will play a role in the price of a stock over

the period of a week, no one can predict the eventual effect

of those decisions on the price. No one. after all. knows all

the investors and their busing patterns. It is reasonably well

understood that stock prices are "random" in this sense

(Malkiel, 1985 1.

Although it would he very difficult to test, the stochastic

vibration hypothesis has one important philosophical impli-

cation. It amounts to a confession of ignorance about the

normal causes of change in abundance of populations, the

contributing factors being in most cases beyond observation

or calculation. It does not, however, signal a state of despair.

It merely injects a note of realism into any project that

would ascribe changes in abundance to single factors.

Consider an individual plant, for example. Upon germi-

nation and up to reproductive maturity, it may be killed

hs too much sun or too little, by excess cold or heat, by

foraging animals, by fungal or other pathogenic attack, by

parasites, by trampling, by overshadowing, by root compe-
tition, by excess dryness or humidity, by flooding, by envi-

ronmental toxins, and so on. Most of these events are

completely unpredictable, especially those driven by the

weather which, being chaotic, cannot be predicted with

any certainty beyond a day or two. Over a season, some of

the plants in a local community will succumb to one of these

factors and die.

To reproduce, a plant must tirst produce seeds. But the

flower may not develop properly, the pollinating insect may
not visit the plain, the pollinator mas not he carrying the

right pollen (in the case of cross-pollinating plants), and so

on. When ovaries are lertili/ed. the game gets even rougher.

That most plants produce rather large numbers of seed

testifies to the fact that most seeds either do not germinate
or dif altei germination. They may land on had soil, he-

eaten by animal scavengers, be attacked by fungus, become

desicated, and so on.

The logistic-J distribution, including its underlying dy-

namical svstem and the stochastic behavior of its species, is

here proposed as the major organi/ing factor present in all

natural communities of living things. As such, it would have

rather important implications in a number of lields. not least

biodiversity assessment and the theory of evolution. Two
brief remarks mav serve lor the lime being.

There are many different definitions of biodiversity, no

two alike (Magurran, 1988). If it is ultimately concluded

that most communities of living organisms follow the lo-

g ist ic -J distribution, then a new and uniform approach to the

problem of biodiversity assessment can be developed. One

may calculate the "biodiversity" of a community of organ-

isms, not as a single number (a hopeless project [Gaston.

1995)) but as a triplet. (R. K. A). These numbers would be

estimates of those parameters for the community as a w hole,

derived via samples that are subjected to the transformations

outlined in Dewdney (1998). And the abundances in such

communities can he large!) reconstructed from these num-

bers, although our theory says nothing about which species

would have which abundances.

In the theory of evolution, it might be asked whether the

stochastic vibrations hypothesized here for species might
also prevail at the generic and higher taxonomic levels.

Williams i 1464) observed that the J-curve also emerges if

one plots genera against species, not in a community this

time, but in standard taxonomic lists. For example, if one

counts the number of bird genera that have I species, 2

species, and so on. a J-curve emerges. This can be done

within families or orders. It may be that genera "vibrate" in

the sense that, through evolutionary time, they lose and gain

species more or less at random (i.e.. unpredictably and with

no overall discernible pattern).

Finally, the J-curve. whether one regards it as being

logistic-J or not. tells us that within am community of

organisms, especially somewhat isolated or patchy ones,

there will be many species with relatively small popula-

tions far more than is commonly realized, even by many
field biologists. Such populations will be more readily sub-

ject to mutational change, since new genes have a much

better chance of spreading through them. From this view-

point, the low abundance end of the J-curve may be iden-

tified not only as the grave of evolution, hut its cradle, as

well.
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